11 research outputs found

    Variance-based reliability sensitivity with dependent inputs using failure samples

    Full text link
    Reliability sensitivity analysis is concerned with measuring the influence of a system's uncertain input parameters on its probability of failure. Statistically dependent inputs present a challenge in both computing and interpreting these sensitivity indices; such dependencies require discerning between variable interactions produced by the probabilistic model describing the system inputs and the computational model describing the system itself. To accomplish such a separation of effects in the context of reliability sensitivity analysis we extend on an idea originally proposed by Mara and Tarantola (2012) for model outputs unrelated to rare events. We compute the independent (influence via computational model) and full (influence via both computational and probabilistic model) contributions of all inputs to the variance of the indicator function of the rare event. We compute this full set of variance-based sensitivity indices of the rare event indicator using a single set of failure samples. This is possible by considering dd different hierarchically structured isoprobabilistic transformations of this set of failure samples from the original dd-dimensional space of dependent inputs to standard-normal space. The approach facilitates computing the full set of variance-based reliability sensitivity indices with a single set of failure samples obtained as the byproduct of a single run of a sample-based rare event estimation method. That is, no additional evaluations of the computational model are required. We demonstrate the approach on a test function and two engineering problems

    Global sensitivity analysis in high dimensions with partial least squares-driven PCEs

    Get PDF
    We develop an efficient method for the computation of variance-based sensitivity indices using a recently introduced latent-variable-based polynomial chaos expansion, which is particularly suitable for high dimensional problems. By back-transforming the surrogate from its latent variable space-basis to the original input variable space-basis, we derive analytical expressions for these sensitivities that only depend on the model coefficients. Thus, once the surrogate model is built, the variance-based sensitivities can be computed at negligible computational cost as no additional sampling is required. The accuracy of the method is demonstrated with a numerical experiment of an elastic truss.This project was supported by the German Research Foundation (DFG) through Grant STR 1140/6-1 under SPP 1886

    Sequential active learning of low-dimensional model representations for reliability analysis

    Full text link
    To date, the analysis of high-dimensional, computationally expensive engineering models remains a difficult challenge in risk and reliability engineering. We use a combination of dimensionality reduction and surrogate modelling termed partial least squares-driven polynomial chaos expansion (PLS-PCE) to render such problems feasible. Standalone surrogate models typically perform poorly for reliability analysis. Therefore, in a previous work, we have used PLS-PCEs to reconstruct the intermediate densities of a sequential importance sampling approach to reliability analysis. Here, we extend this approach with an active learning procedure that allows for improved error control at each importance sampling level. To this end, we formulate an estimate of the combined estimation error for both the subspace identified in the dimension reduction step and surrogate model constructed therein. With this, it is possible to adapt the design of experiments so as to optimally learn the subspace representation and the surrogate model constructed therein. The approach is gradient-free and thus can be directly applied to black box-type models. We demonstrate the performance of this approach with a series of low- (2 dimensions) to high- (869 dimensions) dimensional example problems featuring a number of well-known caveats for reliability methods besides high dimensions and expensive computational models: strongly nonlinear limit-state functions, multiple relevant failure regions and small probabilities of failure

    Certified Dimension Reduction for Bayesian Updating with the Cross-Entropy Method

    Full text link
    In inverse problems, the parameters of a model are estimated based on observations of the model response. The Bayesian approach is powerful for solving such problems; one formulates a prior distribution for the parameter state that is updated with the observations to compute the posterior parameter distribution. Solving for the posterior distribution can be challenging when, e.g., prior and posterior significantly differ from one another and/or the parameter space is high-dimensional. We use a sequence of importance sampling measures that arise by tempering the likelihood to approach inverse problems exhibiting a significant distance between prior and posterior. Each importance sampling measure is identified by cross-entropy minimization as proposed in the context of Bayesian inverse problems in Engel et al. (2021). To efficiently address problems with high-dimensional parameter spaces we set up the minimization procedure in a low-dimensional subspace of the original parameter space. The principal idea is to analyse the spectrum of the second-moment matrix of the gradient of the log-likelihood function to identify a suitable subspace. Following Zahm et al. (2021), an upper bound on the Kullback-Leibler-divergence between full-dimensional and subspace posterior is provided, which can be utilized to determine the effective dimension of the inverse problem corresponding to a prescribed approximation error bound. We suggest heuristic criteria for optimally selecting the number of model and model gradient evaluations in each iteration of the importance sampling sequence. We investigate the performance of this approach using examples from engineering mechanics set in various parameter space dimensions.Comment: 31 pages, 12 figure
    corecore